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LLNL has a long history of R&D in ODE/DAE 
methods and software
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Fortran solvers written at LLNL:

—VODE: stiff/nonstiff ODE systems, with direct linear solvers

—VODPK: with Krylov linear solver (GMRES) 

—NKSOL: Newton-Krylov solver - nonlinear algebraic systems 

—DASPK: DAE system solver (from DASSL)

Recent focus has been on parallel solution of large-scale 
problems and on sensitivity analysis

Push to solve large, parallel systems 
motivated rewrites in C

CVODE: rewrite of VODE/VODEPK [Cohen, Hindmarsh, 94]

PVODE: parallel CVODE [Byrne, Hindmarsh, 98]

KINSOL: rewrite of NKSOL [Taylor, Hindmarsh, 98]

IDA: rewrite of DASPK [Hindmarsh, Taylor, 99]

Sensitivity variants: SensPVODE, SensIDA, SensKINSOL
[Brown, Grant, Hindmarsh, Lee, 00-01]

Organized into a single suite, SUNDIALS, with one ODE 
solver, CVODE  

New sensitivity capable solvers in SUNDIALS:

— CVODES [Hindmarsh, Serban, 02]

— IDAS – in development
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Structure of SUNDIALS
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Solvers

• x’ = f(t,x), x(t0) = x0 CVODE
• F(t,x,x’) = 0, x(t0) = x0 IDA
• F(x) = 0 KINSOL

Solvers

• x’ = f(t,x), x(t0) = x0 CVODE
• F(t,x,x’) = 0, x(t0) = x0 IDA
• F(x) = 0 KINSOL

The SUNDIALS solvers share common 
features

Written in C, Fortran interfaces for CVODE and KINSOL

Inexact Newton for nonlinear systems

GMRES for linear solves (dense option for CVODE, IDA, 
CVODES, and IDAS)

User supplies system-defining function

Written in a data structure neutral manner

—Do not assume any specific information about data

—Vector operations can be supplied

User supplies preconditioner setup and solve routines

—Default band preconditioner available

—Can use external preconditioning packages

Philosophy: Keep codes simple to use
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CVODE solves y’=f(t,y)

Variable order and variable step size methods:

— BDF (backward differentiation formulas) for stiff systems

— Implicit Adams for nonstiff systems

(Stiff case) Solves time step for the system

— applies an explicit predictor to give yn(0)

— applies an implicit corrector with yn(0) as the initial guess
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Time steps are chosen to minimize the local 
truncation error

Time steps are chosen by:

— Estimate the error: E(∆∆∆∆t ) = C(yn - yn(0))

–Accept step if ||E(∆∆∆∆t)||WRMS < 1

–Reject step otherwise

— Estimate error at the next step, ∆∆∆∆t’, as

— Choose next step so that ||E(∆∆∆∆t’)|| WRMS < 1

Choose method order by:

— Estimate error for next higher and lower orders

— Choose the order that gives the largest time step meeting 
the error condition
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Computations weighted so no component 
disproportionally impacts convergence

An absolute tolerance is specified for each solution 
component, ATOLi

A relative tolerance is specified for all solution 
components, RTOL 

Norm calculations are weighted by:

Bound time integration error with:

The 1/6 factor tries to account for estimation errors
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An inexact Newton-Krylov method can be 
used to solve the implicit systems

Krylov iterative method finds linear system solution in 
Krylov subspace:

Only require matrix-vector products

Difference approximations to the matrix-vector product are 
used,

Matrix entries need never be formed, and memory savings 
can be used for a better preconditioner

Dense solver option also available

Precondition I-γγγγH, where γγγγ is related to the time step size 
and H is an approximation to J, the Jacobian of f
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IDA solves F(t, y, y’) = 0

C rewrite of DASPK [Brown, Hindmarsh, Petzold]

Variable order / variable coefficient form of BDF

Targets: implicit ODEs, index-1 DAEs, and Hessenberg
index-2 DAEs

Optional routine solves for consistent values of y0 and y0’ 

— Semi-explicit index-1 DAEs, differential components known, 
algebraic unknown OR all of y0’ specified, y0 unknown

Nonlinear systems solved by Newton-Krylov method

Newton correction uses the Jacobian:

Optional constraints: yi > 0, yi < 0, yi ≥≥≥≥ 0, yi ≤≤≤≤ 0
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KINSOL solves F(u) = 0

C rewrite of Fortran NKSOL (Brown and Saad)

Inexact Newton solver: solves J ∆∆∆∆un = -F(un) approximately 
with a preconditioned Krylov solver

Krylov solver: scaled preconditioned GMRES

— Optional restarts

— Preconditioning on the right: (J P-1)(Ps) = -F

Krylov iteration requires matrix-vector products; can be 
supplied by the user or done by differencing 

Optional constraints: ui > 0, ui < 0, ui ≥≥≥≥ 0 or ui ≤≤≤≤ 0

Dynamic linear tolerance selection

Can scale equations and/or unknowns
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Inexact Newton’s method gives quadratic 
convergence near the solution

Starting with x0, want x* such that F(x*) = 0

Repeat for each k

— Solve,                                          so that, 

— Update, xk+1 = xk + sk+1

Until,

If x0 is “close enough” to the solution, 
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Line-search globalization for Newton’s 
method can enhance robustness

User can select:

— Inexact Newton

— Inexact Newton with line search

Line searches can provide more flexibility in the initial 
guess (larger time steps)

Take, xk+1 = xk + λλλλsk+1, for λ λ λ λ chosen appropriately (to 
satisfy the Goldstein-Armijo conditions):

— sufficient decrease in F relative to the step length 

— minimum step length relative to the initial rate of decrease

— full Newton step when close to the solution
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Linear stopping tolerances can be chosen to 
prevent “oversolves”

Newton method assumes a linear model 

— Bad approximation far from solution, loose tol.

— Good approximation close to solution, tight tol.

Eisenstat and Walker (SISC 96)

— Choice 1

— Choice 2

Constant value

— Kelley method

— ODE literature
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Preconditioning is essential for large 
problems as Krylov methods can stagnate

Preconditioner P must approximate Newton matrix, yet be 
reasonably efficient to evaluate and solve.

Typical P (for time-dep. problem) is

The user must supply two routines for treatment of P:

— Setup: evaluate and preprocess P (infrequently)

— Solve: solve systems Px=b (frequently)

User can save and reuse  approximation to J, as directed 
by the solver

SUNDIALS offers two options for preconditioning:

— Hooks for user-supplied preconditioning

— BandPre module – Banded preconditioner (serial)

— BBDPre module – Band-Block-Diagonal (parallel)

JJJI ≈− ~
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The SUNDIALS NVECTOR module is generic

The generic NVECTOR module defines:
— A content structure (void *)

— An ops structure – pointers to actual vector operations 
supplied by a vector definition

Each implementation of NVECTOR defines:

— Content structure specifying the actual vector data and any 
information needed to make new vectors (problem or grid 
data)

— Implemented vector operations

— Routines to clone vectors

Note that all parallelism (if needed) resides in reduction 
operations: dot products, norms, mins, etc.

SUNDIALS provides serial and parallel 
NVECTOR implementations

Use is, of course, optional

Vectors are laid out as an array of doubles (or floats)

Appropriate lengths (local, global) are specified

Operations are fast since stride is always 1

All vector operations are provided for both serial and 
parallel cases

For the parallel vector, MPI is used for global reductions

These serve as good templates for creating a user-
supplied vector structure around a user’s own existing 
structures
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SUNDIALS code usage (new release) is 
similar across the suite

#include “cvode.h”
#include “cvspgmr.h”
#include “nvector_parallel.h”

y = N_VNew_Parallel(comm,n,N);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
flag = CVodeSet*(…);
flag = CVodeMalloc(cvmem,rhs,t0,y,…);
flag = CVSpgmr(cvmem,…);
for(tout = …) {

flag = CVode(cvmem, …,y,…);  }

NV_Destroy(y);
CVodeFree(cvmem);

Have a series of Set/Get routines to set options

For CVODE with parallel vector implementation:

CVODE and KINSOL provide Fortran 
interfaces

Cross-language calls go in both directions:

Fortran user code interfaces CVODE/KINSOL

Fortran main interfaces to solver routines

Solver routines interface to user’s problem-defining 
routine and preconditioning routines

For portability, all user routines have fixed names.

Examples are provided.

Plan a move to the Babel language interoperability tool for 
access to other languages as well
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Some Applications

CVODE is used in a 3D parallel tokamak turbulence model 
in LLNL’s Magnetic Fusion Energy Division. Typical run: 7
unknowns on a 64x64x40 mesh, with 60 processors

KINSOL with a hypre multigrid preconditioner is used in 
LLNL’s Geosciences Division for an unsaturated porous
media flow model. Fully scalable performance has been
obtained on up to 225 processors on ASCI Blue.

All solvers are being used to solve 3D neutral particle 
transport problems in CASC. Scalable performance 
obtained on up to 5800 processors on ASCI Red.

Other applications: disease detection, astrophysics, 
magnetohydrodynamics

Many more...

Sensitivity analysis in SUNDIALS

Definition and motivation

Approaches

— FSA

— ASA

FSA in SUNDIALS

— Usage

— Methods

ASA in SUNDIALS

— Usage

— Implementation

Application examples
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Sensitivity analysis

Sensitivity Analysis (SA) is the study of how the variation in 
the output of a model (numerical or otherwise) can be 
apportioned, qualitatively or quantitatively, to different 
sources of variation.

Applications:

— Model evaluation (most and/or least influential parameters), 
Model reduction, Data assimilation, Uncertainty quantification, 
Optimization (parameter estimation, design optimization, 
optimal control, …)

Approaches:

— Forward sensitivity analysis

— Adjoint sensitivity analysis

Sensitivity analysis approaches

Computational cost:

(1+Np)Nx   increases with Np
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(1+NG)Nx increases with Ng
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Forward Sensitivity Analysis

For a parameter dependent system

find si=dx/dpi by simultaneously solving the original system 
with the Np sensitivity systems obtained by differentiating 
the original system with respect to each parameter in turn:

Gradient of a derived function

Obtain gradients with respect to p for any derived function 

Computational cost - (1+Np)Nx - increases with Np 
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Adjoint Sensitivity Analysis - Sensitivity of g(x,T,p)
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Stability of the adjoint system

Explicit ODE: proof using Green’s function;

Semi-explicit index-1 and Hessenberg index-2 DAE: the 
EUODE of the adjoint system is the adjoint of the EUODE of 
the original system;
Example: Semi-explicit index-1 DAE
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Stability of the adjoint system (contd.) 

Implicit ODE and index-1 DAE: use bounded transformation

Lemma (Campbell, Bichols, Terrel)
Given the time dependent linear DAE system

and nonsingular time dependent differentiable matrices P(t) multiplying 
the equations of the DAE and Q(t) transforming the variables, the 
adjoint system of the transformed DAE is the transformed system of the 
adjoint DAE.

Theorem
For general index-0 and index-1 DAE systems, if the original DAE 
system is stable then the augmented DAE system is stable.

)()()( tfxtBxtA =+&





=−
−=−
0*

**

λλ
λλ

x

xx

F

gF

&

&

User main routine
Specification of problem parameters
Activation of sensitivity computation
User problem-defining function
User preconditioner function

User main routine
Specification of problem parameters
Activation of sensitivity computation
User problem-defining function
User preconditioner function

Options
- sensitivity approach (simultaneous or staggered)
- sensitivity residuals: analytical, FD(DQ), AD, CS
- error control on sensitivity variables
- user-defined tolerances for sensitivity variables

Options
- sensitivity approach (simultaneous or staggered)
- sensitivity residuals: analytical, FD(DQ), AD, CS
- error control on sensitivity variables
- user-defined tolerances for sensitivity variables

Forward Sensitivity Analysis in SUNDIALS

Band
Linear
Solver

Band
Linear
Solver

Preconditioned
GMRES

Linear Solver

Preconditioned
GMRES

Linear Solver

General
Preconditioner

Modules

General
Preconditioner

Modules

Vector
Kernels
Vector
Kernels

Dense
Linear
Solver

Dense
Linear
Solver

CVODES
ODE

Integrator

CVODES
ODE

Integrator

IDAS
DAE

Integrator

IDAS
DAE

Integrator

#include “cvodes.h”
#include “cvspgmr.h”
#include “nvector_parallel.h”

y = N_VNew_Parallel(comm,n,N);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
flag = CVodeSet*(…);
flag = CVodeMalloc(cvmem,rhs,t0,y,…);
flag = CVSpgmr(cvmem,…);
y0S = N_VNewVectorArray_Parallel(Ns,comm,n,N);
flag = CVodeSetSens*(…);
flag = CVodeSensMalloc(cvmem,…,yS);
for(tout = …) {

flag = CVode(cvmem, …,y,…);
flag = CVodeGetSens(cvmem,t,yS);

}
NV_Destroy(y);
NV_DestroyVectorArray(yS,Ns);
CVodeFree(cvmem);
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FSA - Methods

Staggered Direct Method: On each time step, converge Newton 
iteration for state variables, then solve linear sensitivity system

— Requires formation and storage of Jacobian matrices, Not matrix-

free, Errors in finite-difference Jacobians lead to errors in 

sensitivities

Simultaneous Corrector Method: On each time step, solve the 
nonlinear system simultaneously for solution and sensitivity 
variables

— Block-diagonal approximation of the combined system Jacobian, 

Requires formation of sensitivity R.H.S. at every iteration

Staggered Corrector Method: On each time step, converge 
Newton for state variables, then iterate to solve sensitivity system

— With SPGMR, sensitivity systems solved (theoretically) in 1 iteration

FSA – Generation of the sensitivity system

Analytical 

Automatic differentiation

— ADIFOR, ADIC, ADOLC

— complex-step derivatives

Directional derivative approximation
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Adjoint Sensitivity Analysis in SUNDIALS

User main routine
Activation of sensitivity computation
User problem-defining function
User reverse function
User preconditioner function
User reverse preconditioner function

User main routine
Activation of sensitivity computation
User problem-defining function
User reverse function
User preconditioner function
User reverse preconditioner function

(Modified)
Vector
Kernels

(Modified)
Vector
Kernels

Implementation
- check point approach; total cost is 2 forward 
solutions + 1 backward solution 
- integrate any system backwards in time
- may require modifications to some user-defined 
vector kernels

Implementation
- check point approach; total cost is 2 forward 
solutions + 1 backward solution 
- integrate any system backwards in time
- may require modifications to some user-defined 
vector kernels

Band
Linear
Solver

Band
Linear
Solver

Preconditioned
GMRES

Linear Solver

Preconditioned
GMRES

Linear Solver

General
Preconditioner

Modules

General
Preconditioner

Modules

Dense
Linear
Solver

Dense
Linear
Solver

CVODES
ODE

Integrator

CVODES
ODE

Integrator

IDAS
DAE

Integrator

IDAS
DAE

Integrator

#include “cvodes.h”
#include “cvodea.h”
#include “cvspgmr.h”
#include “nvector_parallel.h”

y = N_VNew_Parallel(comm,n,N);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
CVodeSet*(…);  CVodeMalloc(…);  CVSpgmr(…);

cvadj = CVadjMalloc(cvmem,STEPS);
flag = CVodeF(cvadj,…,&nchk);
yB = N_VNew_Parallel(commB,nB,NB);
CVodeSet*B(…);  CVodeMallocB(…);  CVSpgmrB(…);
for(tout = …) {

flag = CVode(cvmem, …,y,…);
flag = CVodeGetSens(cvmem,t,yS);

}

NV_Destroy(y);
NV_Destroy(yB);
CVodeFree(cvmem);

ASA – Implementation

Solution of the forward problem is required for the adjoint problem 
need predictable and compact storage of solution values for the 

solution of the adjoint system

— Cubic Hermite interpolation

— Simulations are reproducible from each checkpoint

— Force Jacobian evaluation at checkpoints to avoid storing it

— Store solution and first derivative 

— Computational cost: 2 forward and 1 backward integrations

t0t0 tftf

ck0ck0 ck1ck1 ck2 …ck2 …

CheckpointingCheckpointing
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ASA – Generation of the sensitivity system

Analytical 
— Tedious

— PDEs: adjoint and discretization operators do NOT commute

Automatic differentiation
— Certainly the most attractive alternative

— Reverse AD tools not as mature as forward AD tools

Finite difference approximation
— NOT an option (computational cost equivalent to FSA!) 

Applications

SensPVODE, SensKINSOL, SensIDA used to determine solution 
sensitivities in neutral particle transport applications.

IDA and SensIDA used in a cloud and aerosol microphysics 
model at LLNL to study cloud formation processes.

SensKINSOL used for sensitivity analysis of groundwater 
simulations.

CVODES used for sensitivity analysis of chemically reacting 
flows (SciDAC collaboration with Sandia Livermore).

CVODES used for sensitivity analysis of radiation transport 
(diffusion approximation).

KINSOL+CVODES used for inversion of large-scale time-
dependent PDEs (atmospheric releases).
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Influence of opacity parameters in radiation-
diffusion models

Opacities and EOS are often given 
through look-up tables 
Consider exponential opacities of 
the form

Problem dimension: Nx = 100, Np = 1
Find sensitivities of temperatures 
w.r.t. opacity parameters 
(SensPVODE)
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Early time effect of Plank opacity
Later effects of Rosseland opacity

Influence of relative permeability parameters in 
groundwater simulation

Sensitivity of water pressure to parameters 
in the expression for relative permeability:

Problem dimension: Nx = 18750, Np = 3

Software: KINSOL and SensKINSOL
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Influence of relative permeability parameters in 
groundwater simulation - Results

Sensitivity to a1 Sensitivity to a2 Sensitivity to b2

Atmospheric event reconstruction
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Atmospheric event reconstruction

CVODES – for gradient and Hessian-vector products
KINSOL – for NLP solution

Problem dimensions: NODE=4096, NNLP=1024

)(fH NG− )(* xf
v
r

Current and future work

More Krylov solvers for the Jacobian systems

IDAS (forward and adjoint sensitivity variant of IDA)

Automatic generation of derivative information

— Complex-step tools for forward sensitivity and/or Jacobian

— Incorporation of AD tools (forward/reverse)

Improved checkpointing / alternatives to checkpointing

— Storage of integrator decision history

— Use of ROM

BABEL / CCA components

New release – expected mid-November
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Availability

Open source BSD license
www.llnl.gov/CASC/sundials

Publications
www.llnl.gov/CASC/nsde
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